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UNIFIED METHOD FOR DELAY ANALYSIS OF RANDOM MULTIPLE ACCESS ALGORITHMS

L. Georgiadis, L. Merakos, and P. Papantoni-Kazakos
Electrical Engineering and Computer Science Department
University of Connecticut
Storrs, Connecticut 06268/

Abstract

In this paper, we present Aa unified method for the delay analysis of

-: a large class of random multiple - access algorithms. *-r method is based

*. on a powerful theorem referring to regenerative processes, in conjuction

with results from the theory of infinite dimensionality linear systems.

,--i -ap- the method to analyze and compute the per packet expected delays
P

induced by three algorithms, in the presence of the Poisson user model.

The considered algorithms are: The controlled ALOHA algorithm, the '0.487

ii  algorithm, and the n-ary stack algorithm. / ./ ri //- ".

i'his work was supported by the U.S. Air Force Office of Scientific
Research, under the grant AFOSR-83-0229.
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1. • INTRODUCTION

A key problem in the design of communication networks is the efficient

sharing of a common transmission channel, (such as a satellite link, a ground

radio channel, a computer bus, a coaxial cable, or an optical fibre) among a

large population of network users. This problem is referred to as the multiple-

access problem, since many independent users share, and, thus, access a common

channel for transmission of information. The solution to the multiple-access

problem must incorporate a distr.ibuted control scheme, termed multiple-access

algorithm, for allocating the channel resources among the network users.

The design and performance of iaultiple-access algorithms are highly

dependent on the nature of the users. When a channel is to support large

numbers of bursty (low duty-cycle) users, random multiple-access algorithms

(RMAAs) become more efficient than deterministic algorithms. This has been

early recognized by the researchers in the field, and a plethora of RMAAs

have been proposed during the past fifteen years [1,2].

The key performance measures of a RMAA are its throughput and delay

characteristics. The evaluation of such characteristics has been the subject

of numerous studies. In most cases, a Markovian model is employed, and the

existence of steady state of the random-access system is related to the

ergodicity of an underlying Markov process. Depen,iing on the complexity of

the state space of such a process, this formulation usually jives sufficient

information on the maximum input tralfic rato that an algorithm can maintain.

However, the evaluation of the delay charaottvri,,tics is a much harder problem,

since they are intimately itnerwoven with the 1ynami(:al behavior of the

algorithm's scheduling mechanisms. 1),ie to this fact, it is not surprising that

results concerninq the d lay chiartot t I, - inited, andi are obtained after

-t rather Lntr icato antci 1iff it lt t III i . 11, L"! I: oi 1sual ly iatched t,) the

. .- .. .. ..... . . . .
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peculiarities of the specific algorithm at hand.

In this paper, we show how the delay analysis of RMAAs can be unified and

simplified, by the use of some known results from the theory of regenerative

processes, and the theory of infinite dimensional systems of linear equations.

After outlining the method in section 2, we demonstrate its wide applicability

and relative simplicity, by applying it, in sections 3 and 4, to three algorithms

that represent different classes of RMAAs, namely:

1) the Controlled ALOHA algorithm ("ALOHA-type" class) [6]

2) the "0.487" algorithm ("full sensing-blocked access" class) [7,8]

3) the n-ary stack algorithm ("limited sensing-free access" class)
[15,16,17]

Fbr the above algorithms, we obtain explicit results on the induced mean

delay, for the Poisson infinite-user population model. The higher moments of

the delay, for the Poisson as well as for an arbitrary memoryless input stream,

can be computed using the same method.

2. THE METHOD

In random-access systems, as in virtually every queueing system, many of

the involved stochastic processes are regenerative. A regenerative process is

a process consisting of a sequence of regeneration cycles such that the

probabilistic structure of the sample function of the process during such a

cycle is the same for every cycle, and independent of that of previous or

future cycles [5]. The beginnings of such cycles are referred to as regeneration

times, and form a renewal process. A discrete-time process tXn n ;I is

said to be regenerative with respect to the renewal process Rp1 , if

the process XRi+njnAl is a probabilistic replica of the process lXnjn i'
!1

for every i, i=l,2,...

p'_
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The regenerative prbabilistic structure of a regenerative process makes

it possible to express its asymptotic behavior in terms of quantities that

refer only to one cycle of the process. This is made precise by the following

elegant and powerful result, which will be referred to as the regeneration

theorem. [3,4,5]

Theorem 1

Let the discrete-time process {Xnln1 i be regenerative with respect

to the renewal process {R Also, let C= Ri+1 - Ri' il'2''.''

denote the length of the i-th regeneration cycle, and let f be a nonnegative,

real valued, measurable function.

Cl
* If C E{C 1} < and S = El Z f(Xi)j < , then,

~i=l

n1 n S

Xim - Z f(Xi) = Xim - E i Z f(Xi) J - w.p. 1
nn i=l n+ n i=l C

Furthermore, if, in addition to the finiteness of C and S, the distribution of

C1 is not periodic, then Xi converges in distribution to a random variable

X,,, and

SEtf(X ) = -
C

Thus, under the conditions stated above, the limiting (expected) average,

and the mean of the limiting distribution of {f(Xn))n)i exist, coincide,

and are finite. Moreover, their common value is then given in terms of the per

cycle quantities S and C.

-

*°* d ... **** * *
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Given a RHAA, let tX nin1 be the process of interest associated with

the random-access systam; this process might, for example, be the delay process

induced by the algorithm. Then, provided that [Xn}n) can be shown to be

regenerative, the regeneration theorem itself shows the way to establish the

existence of steady state, and to compute the steady-state moments, and the distribu-

tion of tXnln ;,, by appropriately selecting the function f.

In virtually all existing RMAAs, it is relatively easy to identify regenera-

tive times (e.g., when the system becomes empty, or when an appropriate Markov

chain hits a suitable fixed state), at which the process of interest probabilis-

tically restarts itself. Given a RMAA and a function f, the problem then is to

,. exploit the dynamics of the algorithm, to find those per cycle properties of the

sample function of the process, that could be subsequently used to evaluate the

quantities C and S.

In section 3, it is shown that for the delay process, and for f(x) = x,

the computation of S and C are intimately related to the solution of an infinite

dimensional system of linear equations. It can be shown that this is the case

" n
when f(x) = x , n = 2,3,..., as well (12]. Therefore, the steady-state moments

of the delay process induced by a particular algorithm, can be computed

*from the solution of the corresponding infinite linear system. In Appendix A,

we give a number of general results, that are useful in establishinj the

existence and uniqueness of a solution, and in developing approximations to

-the solution of such systems. In section 4, we apply these results to the

* specific infinite linear systems developed for the three algorithms of section

3. This procedure involves the following steps.

Step 1 Find conditions under which the infinite linear system has a
unique, nonnegative solution.



Step 2 Show that the variables of interest coincide with the unique
solution.

Step 3 Develop arbitrarily tight upper and lower bounds on the solution.

3. THREE ALGORITHMS AND THEIR RELATED SYSTEMS OF EQUATIONS

For all three algorithms of this section, we assume a collision-type, packet-

switched, slotted, broadcast channel. The channel is accessed by a very large

(effectively infinite) number of identical, independent, packet-transmitting,

bursty users. The cumulative packet generation process is modelled as a Poisson

process, with intensity X packets per slot. However, the proposed method can be

• .applied equally well, when the number of packets per slot are independent and

- identically distributed (i.i.d) random variables.

We define the delay, Vn, experienced by the n-th arrived packet, as the time

difference between its arrival at the transmitter, and the end of its successful
4

transmission. We are interested in evaluating the steady state statistics of

the delay process {n}nl, when they exist. Due to space limitations in

this paper, we give explicit results, only for the first moment of the delay

process. However, higher moments of the delay, as well as other quantities of

"- interest can be computed, using the same method; (the computation of the delay

* variance for the third algorithm in this paper can be found in [12]).

- 3.1 Example 1 Controlled ALOHA

The earliest and most well Known RMAAs belong to the class of the ALJHA

• .techniques [14,6,19]. Here, we analyze a version of the slotted ALOHA

algorithm, that operates with each user transmitting a newly arrived packet,

* in the first slot after its arrival. Should this cause a collision, each

involved user independentLy ret rdfnsmits its packet in the next slot,

,,,,:: : .:...... .. ,...,,, .,,.,,... .,..-...," ........_ _...................,..........,...........,................ . .. .... ...... ............................ , .... -.
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with probability f.

A packet whose transmission is unsuccessful is said to be blocked. Let M. be

the number of blocked packets at the beginning of slot i (time segment (I,i+lj).

This number will be referred to as the backlog size. Also, let Ri denote the

number of blocked packets retransmitted in slot i, and Ni denote the number of

new packets transmitted in slot i. Given M = m, then clearly,

P(Ri=r) = ((f) = fr (l-f)m-r , i = 0,1,2,... (1)

A e -  An

P(Ni=n) = Pn - , = 0,1,2,... (2)
n!

The delay process induced by the above algorithm "probabilistically

restarts itself" at the beginning of each slot Ti, at which MT = 0, i = 1,2,...;
1

this is so because the number of arrivals per slot is an i.i.d. sequence of

random variables. Precisely, let T1 = 1, and define Ti+I as the first slot

after Ti at which MTi+ 0. The interval (Ti , Ti+1), i = 1,2,..., will be

referred to as the ith session.

LetR i' i = 1,2,..., denote the number of packets successfully transmitted

Ln the interval (0, Ti+1 ] (Note that Ri also represents the number of packets

arrived during the interval LO, Ti-1)). Then, C i 
= R1 - Ri, i = 1,2,..., is

the number of packets successfully transmitted in thie irntervAl (Ti, P 1 i. P 'e

sequence t'iri is a renewal process, since is a sequence

of nonnegative i.i.d. random variables. Mirtherinore, the delay process Vn .1

is regenerative with respect to the renewal process LR P1 -1' with regenera-

tion cycle, C 1 .

Fromn the)rel 1, with f(Vi) V,, we have tt dt it C E.( < =, andi t

b1'

- - ,; .. . . . .... .. . .*.*..
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s Et ,ET j < then, there exists a real number D, such chat,

11

i=I

1 n 1 n S
D = im - Di = Yim - E( Di ) = EtV = - a.e.

n+o n i=1 n+- n i=1 C

Thus, provided that both S and C are finite, the limiting average, the

limiting expected average, and the mean of the limiting distribution of [Vi)i 1 ,

exist, coincide, and are finite; their common value D will be referred to as the

mean packet delay.

Next, we develop two systems of equations, whose solution ,Iy be used to

compute the mean cycle length C, and the mean cumulative delay S. The

*, properties and the computation of the solution will be postponed until section 4.

l.a Mean Cycle Length

If the mean session length H = E {Ti+ - Til , i ) 1, is finite, then

by Wald's identity, we have that,

C = AH (3)

To determine H, we proceed as follows. Let h, denote the random number of

slots needed to return to zero backlog size, starting from a slot j where the

backlog size is equal to i, i 0. By deftnttL)n, then, 4 = E h. The

operation of the algorithm yields the following relation for the hi 's.

h rif N=0,1, ho  ( 4 .a)
1 + Nif N > 1

J.26

'...



I_ I _ 1 , ,, ., ... . . . .: -... . . . "-

I + hi if R3 + N3 = 0

h i  1 + hi+N.1 if R] - N. = 1 (4.b)

1 + qi+N if R* + 1N > 1

If we let Hi =E (hi}, i 0, then after taking expectations in (4) we obtain,

Hi  b i + X Cik Hk (5)

k=0

where bi  1, i 1 0, c0 0  c = 0, Col = pi, i 3 2, Cik = Pk-i, k > i + 1,

ci i - pl (1-B (f)), c = p0 (-B (f)) + plB (f), cii =p0
B i(f),

C = 0, k < i-I, and where pi, B'(f), i ) 0, 0 ( j < i, are as defined in
ik

(1), and (2), respectively.

Note that the mean session length H, can be computed from system (5), since

H = H0 .

l.b Mean Cumulative Delay

The mean cumulative delay, S', can be computed using a system of equations

similar to system (5). To develop such a system we proceed as follows. Let w i

denote the cumulative delay experienced by all the packets that were successfully

transmitted during hi slots. ( ) lso, let W i = Elwi}, i " 0, and note that

The operatton of thte al.;orLthm yields the following relations for the w i s.

N *i.f 0, or 1

wU = I (6.a)
-N + 14 if > 1

3 3]

1) Ire, for onv±n nc , we count the .iel.ay ot d packet, starting [ruit

t,,W !We r J1 tnrg )f t.h f -. t r .;0 t Ifte r its arrival.

-. , * ..
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i i+N + wi  if Rj + NJ = 0

i>= i + NJ + Wi+N -1 if Rj + NJ = 1 
(6.b)

i + Nj + Wi+N if + Nj > 1
J

After taking expectations in (6) we obtain

Wi  1 + Cik Wk (7)

k=0

where bb = A , b = i + A , i > 1, and Cik are as defined in (5).

3.2 Example 2 : The "0.487" Algorithm

This algorithm is the most efficient RMAA known to date, for the Poisson

infinite-user population model and ternary feedback; (it allows a maximum

throughput of 0.487 packets per slot). It is assumed that at the end of

each slot i, the users receive a feedback zi = 0,1, or c, if in slot i there

were zero, one, or more than one packets transmitted.

The following is a brief description of the algorithm; for details,

motivation, and background discussions, the reader is referred to .[8], and

Suppose that at the beginning of slot v(time segment (v,v+l]), all packets

that arrived oefore time tv < v, have been successfully transmitted, and there

is no information concerning the packets that may have arrived in the interval

[tvv), (i.e., the distribution of the interarrival times of the packets in

[tvV) is the same as the one assumed originally). The beginning of such a

slot v is called a "collision resolution instant". The time difterence

dv  - tv will be referred to as the "lag at v". In slot v, the users

Ue
• . . . ........ .. o.-.,.-...,..: ."v .. .. -Uv ." . "..'%
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that generated packets in the interval [tv , tv + U v), where Uv = min(dv , 6),

are allowed to transmit; A is a parameter to be properly chosen for throughput

maximization. In this case, we say that the interval [tv, tv + Uv) is "trans-

mitted". Depending on the received feedback zv, the algorithm operates as

follows:

If zv = 0, or 1, the transmitted interval is "resolved", and at time

v + 1 the resolution of another interval starts, where now tv+1 = tv + Uv;

- v + 1 is a new collision resolution instant.

If zv = c, the collision in the transmitted interval is resolved according

to the following steps:

1. The interval (tv, tv + Uv/ 2 ) is transmitted in slot v + 1.

1.1 If zv+ i = c, the resolution of the interval [tv, tv + Uv/2 ) starts

at v + 2 according to step 1, with tv+2 = iv, and Uv+2 = Uv/ 2 . The

users in [tv + Uv/2 , tv + Uv ) stop participating in the collision
.1,

resolution process (in this case we say that the interval

[tv + Uv/2, tv + Uv ) "returns" to the unexamined portion of the

arrival axis).

1.2 If Zv+l = 0, the resolution of the interval [tv + Uv/ 2 , tv + Uv)

starts at v + 2 according to step 1, with tv 2  tv + Uv/2, and

Uv+2  Uv/2..- v+2

1.3 If zv+1 = 1, the interval (tv + U v/2, tv + Uv) is transmitted in

slot v + 2.

1.3.1 If Zv+2 = c, the resolution of the interval (tv + Uv/ 2 , tv + Uv)

starts at v + 3 according to step 1, with tv+ 3  tv + Uv/ 2
, and

-. Uv+ 3  v2

-p

"-.- .-.-v.*:.-* :~ -~*
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1.3.2 If ZV+2 = 1, the originally transmitted interval has been resolved,

and the resolution of another interval starts at v + 2, with

tv+ 2 = tv + Uv/2 ; v + 2 is a new collision resolution instant.

For the analysis of the above algorithm, we need the following definitions:

6 the length of the originally transmitted interval that is not

returned to the unexamined portion of the arrival axis; we

refer to 6 as the "examined portion of Uv"

X the number of slots needed for the resolution of the interval

[tv, tv + .

N number of packets in 6

W sum of delays of the N packets, after the resolution process

of [tv, tv + Uv) begins

ysum of delays of the N packets, until the instant t + U
. v  v

E[XIu} conditional expectation of the random variable X, given that

Uv U

Let {vil}oi be the sequence of successive collision resolution

instants,and let di be the lag at v i .  It is known, [10], that the sequence

'Lii 1 is a Markov chain, with state space, F a denumerdble dense subset

( of the interval i, ). Let T I = 1, d I = 1, and define T,,,, as the first slot

after T , at which dT = 1. From the description of the algorithm it can be

seen, after a little thought, thait the induced delay process probabilistically

restarts itself at the beginning of each slot Ti, i = 1,2,.... .Therefore,

using the notation and definitions of example 1, the mean packet delay D is

,-ejual to S/C Ir-,viled that both S and C are finite.

..........- ' .-' ..',- ..".' "., " '.. .•. .."."."."... ..-. . " " ° " J •" " "" " J ' ' ' " " " " ' ' " ' '' °" ' '"" '' "q " ' " . . .
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2.a Mean Cycle Length

As in example 1, if the mean session length Ii = E{Ti+i - Ti  is

finite, then C = AH. To evaluate H we proceed as follows.

Let hd denote the random number of slots needed to return to lag equal

to one, starting from a collision resolution instant vi with di = d. Note that,

by definition, h I is the session length. The operation of the algorithm yields

the following relations for the hd's, d E F.

if £ = 11 ( d (Ad, hd = (8.a)

X+hd_6+k if X > 1

d > A , hd £+hd6+k (8.b)

Taking expectations in (8) yields:

1 < d < A , Hd EtX1d} + z p(r,sid)Hd-r+s (9.a)

r,s
sli~ 1

d > A , Hd - E[t2IA + Z p(r,sJIt)Hd-r+s (9.b)

s~r

where p(r,slx) is the joint conditional probability distribution of 6, and

Z, at the point values r and s, given that the transmitted interval is of

length x. Note that,

p (l+Xx)e - Ax if r = x
, . p(r,lix)

0 otherwise

System (9) can be written in the form

2.li d  = b d  + i cdt 'it  itd-[ (10)

% t,.F

..... A.... . ? a ,. . . . . ..* * * . ", ..: ~ .t1 j.-- -•. • .. ... .. - . .-., . . . .. - .. - . - . . - .,.- , ,, ,,-.,,.; .'.'. . ,,. . - . ,., . - ,' ' .
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where bd Eft~d}, I d ( ,, bd = EIXIA}, d > Li, and where

Cdt, d, t cF are nonnegative coefficients that can be appropriately Ldentified

from (9). The conditional expectation E{jd}, 1 < d -; A, can be computed

as shown in Appendix B.

2.b Mean Cumulative Delay

Let wd denote the cumulative delay experienced by all the packets that

were successfully transmited during hd slots. The operation of the algorithm

yields the following relation for the wd'S, d E F.

(w+'p ifX 1
1 d ,wd = I +~d + fX>I(10.a)

w+f (d-A)N if . = 1
d A A , wd = (10.b)

w+p+d-A)N+wd 6+X if X > 1

Taking expectations in (10), yields:

1 4 d 4 A, Wd =EtJwjdj E{4ujd} + E p(s,rld)wd.r+s (ll.a)

rs

d > !A, Wd E(Ol'i -Eiy14 +(d- )E{Nj<i + L p(srj+()Wd-

s,r

(11.b)

System (11) can be written n the for

Wd b d + 2(tdWt d rI s (12)

}.t r F-

-...........................................

.................................................... .........................
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where b,=EwjId+Etdd, I , d 8 a, bA=EiwIlJ+EtVlj +(d-A)EtNI},

and where the coefficients Cdt, d, t E F are as defined in (10). The

conditional expectations EtwIdJ, E{1Ildl, 1 < d f A, and E{NIA can be

computed as shown in Appendix B.

3. Example 3 : Stack Algorithm

A new trend towards the design of easy-to-implement RAAs, which combine

stability and good performance, with modest feedback requirements, started with

the introduction of the "stack" algorithm by Tsybakov and Vvedenskaya [9]. The

new class of algorithms has "limited feedback sensing" and "free access"

characteristics. Limited feedback sensing algorithms require that users sense

the feedback broadcast only while they have a packet to transmit, and, there-

fore, they have practical advantages over continuous feedback sensing algorithms,

such as the algorithm in example 2. The "free access" characteristics of the

new algorithms simplify their implementation, since newly arrived packets are

transmitted in the first slot after their arrival.

The applicability of the proposed method to the analysis of algorithms

from this new class has been demonstrated in [121, where a representative

algorithm, called n-ary stack algoritrhm0 (SAn), has been analyzed. The

analysis presented in [12j is included here for reasons of completeness.

The SAn uses binary teedback of the "collision-No Collision" (C-NC) type;

that is, at the end of each slot, the users that nonitor the channel are

informed whether that slot contained a collision or not. Let zk denote the

binary feedback corresponding to slot k, where zk = NC, and zk = C represent

respectively a noncollision versus collision slot, k. Let some packet arrive

luring slot k-l. We then assu e.1 that the pa,7ket *ttel)ts transmission during

A".,..•.... ..... . ........."'".,. •.. " "' ~ iki nI"" " " * " " "" ".
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slot k, and it observes the feedback, zk and all the feedbacks after that,

until successfully trnasmitted. We also assume that the packet has no know-

ledge of the channel feedback history, zi: i<k (limited feedback sensing). In

its effort to be transmitted successfully, the packet utilizes a counter, whose

indication at the beginning of slot k is denoted by Ik , and it applies the

following set of rules.

1. A packet arrived during slot (k-i), sets Ik = 1

2. A packet attempts transmission within slot k, if and only if, Ik = 1.

The packet is successfully transmitted within slot k, if and only if,

Ik=l and Zk=NC.

3. The updating of the counter indication Ik is done as follows.

a) If Zk=NC, and Ik 4
1 , then, Ik+l=k-i

b) If zk=C, and Ik=1 , then, Ik+l=J; where J is an integer random variable,

uniformly distributed on {l,2,...,n1, and n is an integer parameter,

n > 2.

c) If Zk=C, and Ik>l, then Ik+1=Ik + -1

The operational characteristics of the SAn are perhaps better explained by

introducing the concept of a "stack", as it was first done in [9]. A stack is

an abstract storage device, consisting of an infinite number of cells, labelled

1,2,3... . The number of packets that a cell can accommodate is unrestricted.

At the beginning of each slot, k, the m-th cell of the stack contains the

packet with Ik=m. Packets are eventually successfully transmitted after moving

through the cells of the stack in accordance with the rules defined above, as

shown in figure 1. To resolve conflicts, the algorithm splits uniformly the

group of collided packets into the first cells of the stack. The integer n

.. %
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is an algorithmic parameter, whose value may be chosen for performance

optimization.

The random access system operates with the SAn in sessions. A session is

a sequence of consecutive slots that begins and ends at two consecutive

algorithmic renewal instants, to be defined below. Those instants are denoted

by Ti, i > 1, and are determined by means of a renewal counter. The first

session begins at T1=1, with the renewal counter set to "2". Depending on the

channel outcomes, the renewal counter updates its indication in accordance with

rules 3.a, and 3.c. The second renewal instant, T2 , is the instant at which

the renewal counter drops to "1" for the first time; this signifies the end of

the first session. Immediately after T2 the renewal counter is reset to "2",

and the second session begins. This process continues indefinitely, and defines

the successive sessions [Ti, Ti+i), i=1,2,...

From the definition of the session given above, it can be easily seen that

V. immediately before the end of a session, all cells of the stack are empty of

packets, and that a new session begins with the group of new packets, that

arrived during the last slot of the previous session, placed in cell #1. Due to

the independent and stationary increments property of the arrival process the

session lengths Ti+i-Ti, i=1,2,..., are positive i.i.d. random variables.

Furthermore, as in the previous two examples, the delay process iDitl,1

is regenerative with respect to the renewal process tRi with

regeneration cycle length, the number of packets successfully transmitted during

a session. Therefore, the mean packet delay D induced by the SAn is equal to S/C,

provided that both S and C are finite.

3.1 Mean Cycle Length

As in the previous examples, C AH. Po determine the mean session

.

&,. *.** ~
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length, H, we proceed as follows. Let hi, i > 0, denote the random length of

a session that begins with i packets in the first cell of the stack. After

a little thought, it can be seen that the dynamics of the SAn yield the

following relation for the hi's:

n
h = h I = 1 ; h = 1 + E hI+N ' i > 2 (13)

j=1 J =

where N1 , N2 .... Nn are independent, Poisson random variables with parameter

X, which are also independent of the random variables I1, 12, 1..., In'

which are multinomially distributed, with

1n

P(I=il,...,In='in) ,-- 0 ij i, E ij =i

i i I ... oinl j=1

If we define Hi = E{hil = EfhlII=i}, then, after taking

expectations in (13), we obtain,

H0 = H, = 1

Hi = bi + Z ci k Hk, i 2 (14)
k=2

whereb = 1 +c i + Ci0 , i > 2, cik = n(Pk*Iln-l)), i ; 0, k > 0

and where BlI'), Pk are as defined in (1), and (2), respectively, and

. signifies convolution.

The mean session length is given by

o

H E pi Hi (15)
i=0

• ."'.'."."."'.'.'-" ".- -"- ": ,.. . .: " .. . .. . . . .ii I
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3.2 Mean Cumulative Delay

Let wi ; i ;, 0, denote the cumulative delay experienced by all the

packets successfully transmitted during a session that begins with i packets

in the first cell of the stack. The rules of the algorithm yield the following

relation for the wi's:

n-1 n
w 0= ; W =1; i i 9Q h I+ + zwI.+N. i1 (6

J.l 1 i J=l I

M=j+

Taking expectations in (16) yields the following system of equations for the

conditional mean cumulative delay Wel Eywil EiwjjI=i, i ; 0:

WO = 0, Wi 1

e= !+ ;cOd W i c at 2 (17)

k= 2

where

n-2 i i-j
bp=be(tH c )=+csu + Bi d i ) s es n -h- p(i-j-k)hi pa 2,
1 1 1 n n4=0 3=0 M=0 ki

and where c B (), 2, k ; 2 are as defined in (14), (1), and

Qj~~ik k Pk' m 3 -

(2), respectively.

the mean cumulative delay, S, is given by

W i Wi (1)
i=2

whr
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4. SYSTEM SOLUTION AND MEAN PACKET DELAY BOUNDS

In this section, we investigate the conditions under which the infinite

dimensional linear systems (5), (7), (10), (12), (14), and (17) have unique,

nonnegative solutions, and we develop upper and lower bounds on those solutions.

These bounds are then used to obtain bounds on the mean packet delay. We pro-

ceed, following the steps outlined in section 2.

4.1 Step 1

For convenience, we rewrite an infinite linear system in an operator form.

Specifically, let E be the space of sequences X = tx(v)J: A -R, where A

is a countable set. Also, let EL be the subspace of E for which,

E JCuvX(V)j < -, PE

vEA

We define the operator L = {L (x)J: EL-PE, as follows.

L, (x) = b L + Z cLPv x(v) , ptA , x E EL
veA

In this notation, systems (5), (7), (10), (12), (14), and (17), can be written

in the form,

SL  L(SL), SL E EL (19)

We are interested in the existence and uniqueness of nonnegative points

SL t EL, that satisfy (19); such points will be referred to as fixed

.oints of L, and represent solutions to the corresponding infinite linear

system of equations. The question of uniqueness of a fixed point SL, or

equivalently of the solution, tSL(i)1, to the system that operdtor 1.

....-.~~~~~~.... .. -....... ................................-. "..... . .?.... . .... .
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represents, depends upon what conditions are imposed an the solution. Thus,

LL

after the existence of a solution, {( i)}, has been established, one

has to indicate a class of sequences in which the solution is unique. If the

algorithmic sequences of interest tHi), or tWil belong to the indicated

class, then they must coincide with the solution isLi. (This will be

examined in Step 2).

i Appendix A includes a number of results that can be used to establish

-- existence and uniqueness of a fixed point of an operator. Depending on the

i? operator# some are more straightforward to apply than others. Among the

results in Appendix A that can be used to establish existence of a solution,

Lemma A.2 is usually the most useful. According to Lemma A.2, to establish

existence of a nonnegative fixed pont, S , it suffices to find a point

X e: E L , such that,

0%i < L(x°) 4x°  (20)

A point X , satisfying (20), also serves as an upper bound on SL .  Further-

more to establish a lower bound ont, it suffices a point YO EL

suc tLh uca tat-N

YO - LyO) < Xo  (21)

Thus, under (20) and (21), we have that,

yo - SL i Xo (22)

We proceed now with the analysis of the systems developed in section 3.

........... ............ ... .................... ........
.,',.2,-.' ..:. ;-, '.' "..- .,..".".........."........-....-.....-........"...........-..-."..".."..."-."."..........,...-..-.,.,.............I.
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1. Controleld ALOHA

System (5) -- Existence; System (5) corresponds to an operator L1 with
L1  L 1

bi= bp, Cv = c', W, v E NO, where No is the set of nonnegative integers,

and the b's and cv 's are as defined in (5). If we let X° = {x°(k)J with

x°(k) = a k + Ou' k ; 0, then by straightforward manipulations we have that, for
U

this choice of Xo, (20) is satisfied if and only if the following inequalities are

satisfied.

SA < kf) - Pok(f) + PlBk(f), for every k -1 (23)

U up ,------- k (24)

u (1 + au - pl)/(Po + PI )  (25)

It can be readily seen from (23) that if the retransmission probability f is

constant in every slot, then there is no A 0 for which (23) is satisfied.

If the retransmission probability fi, at each slot i, were allowed to depend

on the current backlog size, Mi, in accordance to a stationary control policy

f = f(Mi), then it is of interest to choose f( ) so that it maximizes the set

of X's for which inequality (23) is satisfied. This is equivalent to

maximizing vk(f) with respect to f. It can be easily verified that, for

every k 1 1, k(f) is maximized for f(K) t*(K), where (2)

2. We should mention that, in a distributed environment, the backlog size
dependent retransmission probability f*(. ) is nonimplementable, since

users are not aware of the current backlog size. However, the control
policy given by (26) can be implemented approximately by adaptive control
schemes that estimate the current backlog size using observable feedback
information from the past activity on the channel [b, 19, 201.

* .

_.
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i-A
f*(K.) 1 (26)

k-A

From this point on, we assume that f is chosen as in (26). Under this assumption,

inequality (23) is satisfied, provided that,

A < inf ('k(f*), k ; } e - I1

To satisfy inequalities (24), and (25), we choose,

1 ,k 1 l+:iu ( "-p 1 ) 1-A 10%/ = SUP -- - -- , k ; I =  -- - - Iu -- - - - --=- - (27)

rk (f ) _A e - po+pl e -1 _

Similarly, it is straightforward to show that if k < e - 1 then the point yO

with yO(k) = a k + ;5, k 0, and

1 1-X 1
= - - - , -- . .. (28)

e- 1_A l+k e-kA

satifies (21). Thus, from (22) and for A < e-1 we have that system (5) has
SLI L I

a solution, S = ts (k), such that

," Ll

0< k + z ; s (k) uuk + ) , k 0 (29)

where au, 6u are as given by (27), and - J-, are as given by (28).

System (7) -- Existence: System (7) corresponds to an operator L 2 with bo =b ,
% L2

C4V c1 CI, P , v E NO, where the b.'s and Cv's are is defined in (7).

Due to the fact that bk is a linear function of k, and since

cGik 1, i - 1,
k=O
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it can be easily seen that there is no linear sequence X °
= {x(k)JI satisfying (20). However, given A < e -1 , it is straightforward to show that

we can choose coefficients yu' 6 u ', such that the paint XO with

~'6k, ',suhtathpon wh

x°(k) = Yuk 2 + 6 Uk + 4u, k > 0, and the point YO with y°(k) = 6£k2 + 6x + C£,

k > 0, satisfy (20), and (21), respectively. The following is such a choice:

1 A+Yu (A2 ++e- 1 ) 1+Yu (l+-e-A)+6 u(1-e-A)

u= 6 =-- ,-- ---u =-

2 -e- -( +

(30)

A+y.(X 2+X+eA(-2X)) +y,(l+A-e
- )+6 z (-e

- )

2(e---- --- ------------------------- X------------2 (e-k- X) e-A-A ( + ~ -

(31)

"':L2 {L2

Then, if A < e - 1, then system (7) has a solution S = (k)} , such that,

4-

0 < Y£k 2 + 6xk + ;9 < s (k) ( 6uk 2 + 6uk + ;,U  k - 0 (32)

where yu, 6u, u are as given by (30), and yk, 6£, 4X are as given by (31).

Systems (5) and (7) -- Uniqueness
• . L I

We will show that both the solution ts (i)i of system (5) and the
." L2

solution is (i)} of system (7) are unique in the class

E2 = { x : s x(i) < }i iEN 0 i2+c

where c is a positive constant.

We start with system (7). Since L 2 is majorant ot itself, from theorem A.1,

-. . . 44 . * *4 4 * 44 4 4 4 '

*" . .. ** .S. . . ... *.- - .• .. • .". "- "... . "'.''" '.'.'....'.''," : .".* ,.. ."," ,"-',. " ,''' ,**,,,,* . .,*"
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L2  L2  L 2
we have that L 2 has a principal fixed point S* , such that 0 Q S* - S

L2
According to theorem A.2, the fixed point S is unique in the class,

2 = IX : sup L2 < 00
iCNo S2

0 L2  L2
provided that Y e E. . Since, by definition, YO eE 2, S will be uniqueL

2

in 2 if we show that E. = 2. According to lemma A.1, it suffices to show

that,

~L2

s* i)
sup < (33)
iEN i2+c

0

and

,. 
L2

s* Wi
inf ------ > 0 (34)
ieN i2 +c

0

L% L2  L 2

Since 0 ( s* (i) ( s (i), (33) follows from (32). To show that (34)-
L 2

holds, we use the power sequence, (Sn }nI, of L 2 with initial point 0. By
L2

definition (see Appendix A), Sn is the point that results after L2 operates n
"L 2  nL 2  L 2

times on the zero point, (i.e., Sn = L;(0)), and S n + S. , as n + .Due' L2 
L2

to the fact that bi > 0, cik 0, 1, k E No, we have that 0 < sn i)L2  L2

Sn+l(i) < s* (i), for every n 1 1, i ) 0. Also, it can be readily shown by

induction that, for every i -1, n 1.,

2L

Sn i) ) ni - n(n-1)/2 (35)

* . . - . . . -- .. , . . . , , ., , . . . . . . . . . . . . ..

. . . . .
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From (35) we obtain,

L 2  L 2  2

s* (i) si (i) 1 i +i 1
£im inf ------ >-im inf ( = - (36)
i+W i2+c i+0 i2+c 2 i2+c 2

L 2

(34) follows from (36), and the fact that s* (i) > 0, i > 0.
Li

The uniqueness in E2 of the solution {s (i)} of system (5) follows

from theorem A.4, part (ii), after one identifies L, with 02 and L2 with 01,

in the theorem.

2. The "0.487" Algorithm

System (10) -- Existence and Initial Bounds
Ll Ll

System (10) corresponds to an operator L1 with b,, = bp , cPv COW

P, v £ F, where the b,'s and clv's are as defined in (10). To

* establish the existence of a nonnegative solution to system (10), we follow

the same procedure as in system (5).

Let XO = rx°(d)} with x(d) = cud + Ou' d eF , and let X' = L1 (X 0).

After straightforward manipulations, we obtain,

x'(d)=x°(d)+E{Xd+a u(E{Xd}-E(4Sd}-(l+Ad)e-'d- u(l+Ad)e , 1 < d < A

(37.a)

x (d) =x 0 (d) + Etild) - a u(E[6 1Il - Eitji1J), d > a (37.b)

According to Lemma A.2, to establish the existence of a nonnegative fixed point

of L1 , it suffices to show that there exist uu, ou' such that,

0 < x'(d) 4 x°(d) , for every d L F (38)

,. , .. . .-..-.- ,-- . . .'.-,-.-, . , . . ..L. .. ,.-
.~ .* 5 . * ..- 5 .- ~-.-- . ***
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From (37.b), we see that this is possible only if

If (39) holds, then it can be readily seen from (37) that (38) is satisfied, if

we choose au, 6u as follows:

E{Xj A1
a = (40.a)

E{6fLiJ - E{2XIAI

u = max{- au. sup (P(d))1 (40.b)

1 ,dA

where

E{X Idl + %u(E{XJd} - E{61dl - (1+Xd)exp(-Ad))

P(d) =-----------------------------------------------
(1+Xd)exp(-Xd)

The conditional expectations appearing in the above expressions can be computed

as shown in Appendix B.

Similarly, it can be shown that, under (39), the point YO {yO(d)l

with y°(d) = a d + 9, d F F satisfies the inequality YO ( L(YO) Xo ,

if at and x are chosen as follows:

a£ = au ' 3 = inf ( P(d)) (41)
1<d<A

where au' P(d) are as given by (40).

Thus, if (39) holds, then from lemma A.2 we have that system (10) has a
L I

nonnegative solution S , such that,

(ztd + X 4 S (d) 4 aud + t3 U d L F (42)
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where au, Ou' and a,, g are as given by (40) and (41), respectively.

System (12) -- Existence and Initial Bounds

Let L2 be the operator that corresponds to system (12). Also, let

X° = {x°(d)1 with x°(d) = yud 2 + 6 ud + u, d E , and YO = iyO(d)J with

y°(d) = Y~d2 + 6 Xd + 4X , d e F.

Fbllowing the same procedure as for system (10), we can show that if (39)
•L 2  L2

holds, then system (12) has a nonnegative solution S = {s (d)J, d E F,

such that,

Yd 2 + 6td + 4  s L2(d) 4 Yud2 + 6ud + 4u (43)

where,

"u = Y - E{N I

2(E(61A) E{XIAI)

E{wIA}) + E( JiI} L E{NJAI + Y u E{( 6-iX2IL
6u = - ----------------- - -----

E{6I.A1 - E[XjAM

-.

: = sup ( (d)) , . = inf (P(d))

fw. Idl+E[Vld}+yu(E{(5-£)
2 1d}-2dE{6-Id-(l+Ad)e

- 6A)6u(E{S - ZId } - (l+Xd)e-Ad)

_(d) -
(l+Xd)e-Xd

The conditional expectations in the above expressions can be computed as

shown in Appendix B.



Remark It is known (7] that inequality (39) is satisified if A 4 M()

where X m (A) is maximized for A ;2.6, and A m(2.6) =0.4871.

.
-4

Systems (10) and (12) -- Uniqueness

We will show that both systems (10) and (12) have unique solutions in the

class

Jx(d) l
E2 x sup --d- < (44)

dL;F d2

As in the case of systems (7) and (9) in example 1, if we show uniqueness for

system (12), then the uniqueness for system (10) follows from theorem A.4,

part (ii).
L2

According to theorem A.2, the fixed point S is unique in the class

L.2 jx(d) I
E. X : sup ---- < Go

dEF SL2

iL2 L2

provided that YO E E. . Since, by construction, YO E C2, S will be
L2

unique in E2 , if E. = E2 " To show that the latter equation holds, we proceed

as follows.

Let Sn = L (0), where L (0) is the n-th power of the operator L2, acting

on the zero point. Clearly,

iL
12

s1 (d) = bd . > 0, for every d e F (45)

a' Also, it can be easily shown by induction that,

n(n-1)

sn(d)=n((d-A)NI AI+E{wAI+E{uIA}) ------ (Et{61-E(ZI )ENI aI
2

(46)

** %% % a . . ' . . . a .a .a .. . . . . . . .. ... . .. .... ... ....
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for every d e F, n 1, such that d > nA . EFr d > 2L, letting 3 1

in (46), and using the fact that L > - 1, yields,

s (d) >ad 2 + d + y , d > 2A (47)

where a > 0. (The expressions for the coefficients a, , r are not of

interest and, therefore, are omitted).L
2

If S. is the principal solution of L 2, then from theorem A.1 we have,

L
2

S* d) ) Sn(d) ) 0 , for every d E F , n 1 1 (48)

From (45) and (48) we have that,

S* Cd) ' > 0 , for every d e F (49)

From (47) and (49) we conclude that,

S* (d)
inf ------ > 0 (50)
dt F d 2

L2  L2
From (43), and the fact that S. r S , we have,

L
2

s. (d)
sup --- - < (51)
dLF d2

-. b.'-L
2

. Finally, from (50), (51), and lemma A.1 we have that = E2

3. LaJ denotes the maximum integer not exceeding a.
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3. Stack Algortihms

System (14) -- Existence and Initial Bounds
"L1 L 1

System (14) corresponds to an operator L1 with bp = bp, cv =cpv,

o, )2, v > 2, where the bo's and cov's are as defined in (14). Let

X° = {x°(k)} with x°(k) = auk + u, k > 2, and let YO = {yO(k)) with

y°(k) = ak + O, k . 2. Then, by straightforward manipulations (see [12]

for details) we can show that (20), and (21) are satisfied (with L1 = L) if

1/2
X < X(n) = ((8n 3-7n2+2n+1) - 3n+1)/(2n(n-l)) (52)

au - nll+n+ ln-1))/12(n-1-n )-ln-11(l+Anl),u = (l+nu)/(n-1) (53)

a = n/(n-l-nX) , OX = (l+ncXl)/(n-1) (54)

Thus, if X < Xo(n), then system (14) has a solution S , such that

0 4 alk + at 4 s (kl W auk + Ou , k -a2 (55)

Where au , Ou are as given by (53), and at, O are as given by (54).

We note that Xo(n) attains a maximum at n = 3, with Ao(3) = 0.3874.

System (14) -- Uniqueness:
•L, L1

We will show that S is unique in the class E2 C , which is defined

as follows,

E 2 = X : sup ----- <

i i 2

In order to do so, we use theorem A.4 with L E 01 02 and g(k) g1(k), where,

5, • 5, * . S * o *. ** * **•* * . *. . . ° . . . . . .
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gl(k) k2 + U1k + u o , k 2 (56)

and the coefficients ul, uo are chosen so as to satisfy the conditions stated

in the theorem.

Conditions (a) and (c) are obviously satisfied for any ul, u2 . To satisfy

conditions (b), (d), and (e), it suffices to choose ul, uo so that,

gl(i) > 0, and G1 (i) > 0 , for every i - 2 (57)

where,

Gl(i) = g1 (i) -E cikg(k)=h(i)+ci1+(Cil-nA)u1+(cio+cil-n+1)u2,i 2 (58)
k=2

and

h(i) = (1 - )12 _ (1 - - - 2X)i - nA(I+A) , i 2
n n

Given X < Xo(n), then it is straightforward to show that there exist uI ,

u2 that satisfy (57). The following choice is adopted from [12]:

ul = max(-l, (h2/(n-1)+v/(nA/(n-1)-v)J+ 1 , u. = (u1+l)v (59)

where v = (A(n-1)+2)/((1+A)(n-1)+2).

With ul, u2 chosen as above, it is clear from (55) and (57) that condition
Li

(e) is satisfied. Thus, S is the unique solution of system (14) in the class

Eg1  E , which is defined as follows,

EXL X Ix(i)l"E 1  fi X : s u p < G

L1

s (i)+g1 (i)

L1
Finally, from lemma A.1 we, have that E = E2 .

21

.. . ............... .......................................... .. . .. .
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System (17) -- Existence and Initial Bounds

In section 4.2, we will show that the sequence of the conditional mean
L I

session lengths, {Hili2' coincides with the soluton S of system

(14), if this solution exists, (i.e., if A < Ao(n)). With this in mind,
L2  LI  L2

system (17) corresponds to an operator L2 with b. = bV'(S ), cpv = Cjv,

2, v ' 2, where the b,'(.)Is and cuv's are as defined in (17).

Let X ° = {x°(k)} with x°(k) = Yu gl(k), k > 2, where g1 (k) is as

defined in (56) and yu is a positive real.

Given A < A0 (n), we choose Yu so that X ° > L1 (X°) > 0, or equivalently,

Li  0

Yu gl(i) > bl(S ) +Z c ik Yu g1 (k) > 0 , i ; 2 (60)k=2

From (55) we have that bj(S ) bi'"Muk+Oulk)2), i 2, thus, (60)

holds if, for every i ; 2, we have,

g1 (i) > 0 , Yu GI(i) ; bl (Iauk+Oulk 2) , i ) 2 (61)

where G1(i) is as given by (58).

With ul, u2 chosen as in (59), it follows from (58) that inequalities (61) are

satisfied if,

~b![ "uk+ u} )k A-2)

-u = sup (62)
iP2 G1 (i)

(it can be readily shown that 0 < yu< )

Thus, from lemma A.2, we have that if A < Ao(n), then system (17) has a
L2

solution S such that,

....... . .. .1.............. "" .
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0 L2 (i) 4 u i 2 + 6u i + 4u ' i - 2 (63)

where 6u = u u' 4u = Uo Yu' and where ul, uo are as given by (59) and Yu

is given by (62).

Using similar arguments, one can readily establish the following lower
L2

bounds on S

0 Y i2 + 6t i + X 4 s (i) , i ;- 2 (64)

where,

o" b! ( {Q~k+0£} k JV)

Y" inf -------------- , 6 u , 6 u (65)

i G1 (i)

and where at , 0 are as given by (54).

System (17) -- Uniqueness

In thoerem A.3, let 01 = Lis 02 =L2, and g(i) = Yui 2 + u i + (Up i 2,

where Yu' 6u' ;u are as given in (63). Then, all conditions in the theorem'L2
are satisfied. Thus, S is unique in the class,

L, Ix(i)I
Eg X : sup <

s (i)+g(i)

L,

It is clear from (55) and lemma A.1 that Eg = E2 , where the class E2 is as

defined in the proof of uniqueness for system (14).

4.2 Step 2

%" In step 1, we have established conditions for the existence of nonnegative

solutions to the systems of interest, and we have identified classes of

.................................... 
....... " •'''',
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sequences in which these solutions are unique. Here, we show that the algorithmic

sequences {il, Wil, where Hi 
= E -hij and W i  E {wil, belong to the

corresponding identified class, and therefore, coincide with the unique solution

in the class. The proof is based on theorem A.6, and is the same for all three

algorithms.

Fbr the case of the sequence Hi}, let, in theorem A.6, L = L1 ,

X. = h., and xn" = min(h., n), n = 1,2,3,.... By definition, the X.'s and

X's satisfy condition (a) in the theorem. condition (b) follows from the

fact that 0 4 n a.e.. Finally, condition (c) follows from the operation
1L

of the algorithm. Thus, (Hi1 = S
L 2

Similarly, to show that Wil = S , we apply theorem A.6, with L =L2

= w an = min(wi, n), n = A,2,3,.

4.3 Step 3

0 0
In step 1, we have already found upper and lower bounds, X and Y

respectively, on the solutions to the systems of interest. These bounds

can be improved either by computing the power sequences of the corresponding

operators with initial points the bounds X ° and YO, (lemma A.2), or by solving

finite systems of linear equations that are truncations of the original in-

finite systems, (theorem A.5). Both methods can provide arbitrarily tight

upper and lower bounds. We use the first method in the "0.487" algorithm,

and the second method in the controlled ALOHA and the n-ary stack algorithm.

1. Controlled ALOHA

For system (5), we apply theorem A.5 with L = L, and,

.................................



35

j;. u (i ) = aui + u , i No

L1
x (i) = ai + , E No

D = [0,1,2...,j} j E N0

;where au, u, and at, X are as given by (27) and (28), respectively. Note

that, for given , D. is a finite set and, therefore, all conditions in the theorem

are satisfied. Thus, for X < e-1 ,

s (i) < Hi = s Li(i) s (i) , 0 - i < j

where {S (i)}Oi•j and {s (i)0J04 j are the unique solutions of

the (j+1)-dimensional systems (66) and (67), respectively.

2"u ®J J LI

H? - b 0 + j clk Hk , i 0 < i < j (66)

k=0

-£ cj j LI £
H1  =b +Ec Hi  , i 0 < i < j (67)

k=0
S 4j L2

where b i  , b i  are as defined in the theorem with pi = i= bi , 0 < i 4 j.

therein. We solved systems (66) and (67) for j = 50. The resulted upper bound

Ho and lower bound Ho on the mean session length Ho, can be found in table 1,

for different values of , (A < e-). Fbr system (7) we followed the procedure

described above with,

L = L2

L 2 2."u(i) = Yu i 2 + 6 u i + u 'i NO

L2: 2
". (i) = i + OX i + ( , i E No

Pi Oi bi , i . Vj = t0,1,2,....jl , j c N o
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where Yu' 6u' u are as given by (30), and yX, 0, 4X are as given by (31). The

resulting bounds Wu, W o on the mean cumulative dealy W are included in table 1;
0 0 0

they were computed using j = 50. From the regeneration theorem and (3) we have (4 ) ,

WO
D --- + 0.5 (68)

AHo

The upper bound Du = Wu/(XH) + 0.5, and the lower bound D4 = WX/(AHU)+0.5

on D are included in table 1. Note that, according to theorem A.5, arbitrarily

tight bounds can be obtained by increasing j. From a theoretical view point the

bounds become exact as j +

2. The "0.487" Algorithm

From section 4.2 we have that, for A < 0.487, Rd = s (d), d e F, and

Wd s (d), d e F, where S and S are the fixed points identified in

section 4.1. According to Lemma A.2 we have that,

Ln(Yo) < S Ln(Xo) , n=1,2,..., d Ez F (69)

L.2

L-(Y2
0 ) < S < Ln(Xo) , n=1,2,..., d c F (70)

where XO = ta d + d F' = + a d F
1 u u d P 1  {c1ddeF

. = ('Y d2 + 6 d + 'YO =  yu d2 + u d+ du F2 u u d u d e F

and where '-u' u' ax' OZ' Yk, 6y 'k' Yu 6u ' are as given by (4U), (41), andtU,

(43). Fbr n 1, and d = 1, (69) yields the following bounds on the mean session

length H1 :

Hj i Hu:'. H1 • 1 1 H

4. The additional 0.5 units of time represent the mean delay of a packet, until
the beginning of the first slot following its arrival. (See footnote 1).
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where

H1=E{9111 + ctu(l-(l+X)e
- X +EtI11-E[S1})+I (1-(-+A)e

Uu

Hi = Hi - (4u- 0 ( 1 - ( l + A l e

The above bounds can be found in table 2, for different values of A, ( A < 0.487).

Fbr n = 1, and d = 1, (70) yields the following bounds on the mean cumulative delay

over a session WI:

w1 W w

where

WU=E{WI1)+E{iI11}+YU(1-(l+A)eAx+E{A-42I11-2E{6-XI1}

+ 6u(l-(1+A)e- -Ef-AIJ)+u (1-(l+A)eX)

w X = w -(uul - z X e x1 1

The bounds and W are included in table 2. From the regeneration theorem

we have D = WI/(AHI). The upper bound Du = Wu/(AHI£) and the lower

bound DX = Wk /(XHU) on the mean packet delay D are included in table 2,

and are plotted in figure 2.

Finally, we note that tighter bounds can be obtained either by evaluating the

bounds given by (69) and (70) for higher values of n, or by the method of truncated

systems used in the previous example. In both methods, however, we must first

compute the conditional probabilities p(6 ,£jx) defined in (9), which is a

computationally complex task. Note that for the found bounds, (i.e., for n = in

(69) and (70)), such a computation is not required.

3. n-ary Stack Algorithm

For system (14), we apply theorem A.5 with L = L1 and



38

L.1

u (i) = 3u , i > 2

QLl

S(i1) - i+ X, i 2

D. = {2,3,...,j1 , j 2

L 1

£i.=Oi =bi ,i > 2

where au, u and ag, 0 1 are as given by (53) and (54), respectively. As in the

case of the ALOHA algorithm, the fixed points S and S , in theorem A.5,

are obtained by solving two (j-1)-dimensional systems of linear equations. If we(P j ( 0  (

denotes (i) by H, i ,2, and S (i) by H, i > 2, then using (15) and

(55) we obtain,

H X H 4 H
u

where

uu
H = P0 + P1 + E Pi Hi + E Pi(aui + u 1

i=2 i=j+1

H = P 0 + P1 + E Pi Hi + E p1 (cx i+
i=2 i=j+1

In table 3, we give the bounds Hu, H for different values of A in the

interval (0, Xo(n)), and for n = 2,3..., where A0 (n) is as given by (52);

these bounds were computed using j = 15. For system (17), we use theorem A.5

with L = L 2 , and

L 2 2

U 2 (i) = YU + 0ui + u , i ; 2

X L2 Mi = y11 2 + 6 Xi + 4X , i > 2

L2

3i =bi((41k 0) , i > 2
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where

Yu' 6u# u' Yt, 61f, 4 are as given in (62), (63), (65),

L2
bi (.) - bl( -), with bj(-) as defined in (17)

Qo = Q1 =; Q = Hk  2 k j ; Qk = ck + OX, k j+1

Qo=1 k 1k 2c 4 k j; Qj= uk + Ou, k; Qu=Uj+1

ej j
)DE~

As in the case of system (14), the fixed points S and S , in theorem A.5, are

obtained by solving the corresponding (j-1)-dimensional systems of linear equations.

If we denote s (i) by Wi , i > 2, and s i) by Wi i - 2, then using (18),

(63), and (64) we obtain the following bounds on the mean cumulative delay over a

session, S:

" S £- 4 S < Su

where

SU = + Z pi W 'u +  Z pi ( yu i 2 + 6ui + 4u)

i=2 i=j+l
°j

S= P + E p + Pi(y i 2 + 6ti + 42)

i=2 i=j+1

The bounds Su, S that correspond to j = 15 are included in table 3. From

the regeneration theorem we have(4 ) D = S/(AH) + 0.5. The upper bound

Du = Su/(XH4) + 0.5, and the lower bound Dt = S£/(XHu) + 0.5 on the

mean packet delay D are included in table 3. The bounds for n = 3 are also

plotted in figure 2. From the table we see that bounds found with j = 15

practically coincide even for A close to Ao(n). (According to theorem A.5,

Du +z as j +

*t.
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Finally, note that the algorithm with n 3 has uniformly better mean delay

characteristics, as compared to the algorithm with n = 2. From the operation of the

algorithm and the fact that the quantity Ao(n) decreases monotonically for n 4,

we have every reason to believe that n = 3 is the best choice among all n.

5. CDNCLUSIONS AND PRIOR WORK

In this paper we have introduced a method for the delay analysis of RMAAS, in

which the induced packet delay process is regenerative, and we have demonstrated

its wide applicability by applying it to three specific examples. The method is

based on a well known result from the theory of regenerative processes, which relates

the asymptotic statistics of such processes to quantities that refer only to one

cycle of the process. The per cycle quantities, (e.g., mean cycle length, expectatio

of the sum of the values of the process over a cycle), are evaluated from the

solution of infinite dimensional systems of linear equations. In Appendix A, we

have given a number of general results concerning the existence, uniqueness and

approximation of the solution of such systems, which are of independent interest.

Most of these results are generalizations and extensions of results that can be

found in the early reference [21].

In applying the method to the three example-algorithms, we have put emphasis

on the methodology and rigorous derivations rather than finding short cuts in the

analysis of a particular algorithm. In doing so, the essential simplicity of the

method may have been obscured. However, to appreciate the simplicity of the method,

we note that only by using Lemma A.2, one can obtain with minimal effort:

I) A lower bound on the maximum input rate that an algorithm maintains with
finite delay, (i.e., a lower bound on the maximum stable throughput induced
by the algorithm). Note that for the first two examples of this paper, the
found bound coincides with the maximum stable throughput; for the third
example, the found bound is very close to the maximum stable throughput
[12], and since the induced delays are already at very high values, deter-
mining the exact maximum stable throughput is of theoretical interest only.
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2) Optimal algorithmic parameter choices (e.g., the retransmission proba-

bility policy in the ALOHA algorithm, the window size Li in the "0.487"

algorithm, the splitting parameter n in the stack algorithm).

3) Initial bounds on the mean packet delay, that can be used (if so desired)
to form finite linear systems, whose solution can yield arbitrarily tight

bounds on the mean packet delay.

In this paper, we have given explicit results, only for the mean packet delay,

when the cumulative packet arrival process is Poisson. These results can be

readily extended to the case of an arbitrary memoryless arrival process, as long

as the regenerative character of the delay process is preserved. Moreover, the

method can be used to compute higher moments of the delay process. This is due

to the fact that if f(x) = x , n ' 1, in theorem 1, then the resulting per cycle

quantities are again related to the solution of the infinite linear systems [12].

Thus, the results in Appendix A are applicable.

The algorithms that served as examples in this paper, have been analyzed in a

number of studies. From the literature on ALOHA-type algorithms, we mention the

work in [6), where the stability properties of the version of the Oontrolled ALOHA

algorithm considered here have been studied, using a Markovian model. The optimal

retransmission policy was derived in [6] using Pake's lemma, but the delay analysis

problem was not addressed.

The delay characteristics of the "0.487" algorithm have been studied in (10],

using a different approach. In contrast to the method in [10], the method proposed

here does not require the computation of steady-state probabilities of the under-

lying Markov chain and, therefore, it is computationally simpler. Furthermore,

since our approach is based on the asymptotic properties of regenerative processes,

it yields stronger convergence results.

The delay analysis method of this paper was first applied to the n-ary stack

algorithm in (12]. The analysis in [12] was stimulated by the approach taken in

."...... ....... S. . ... .............. . . .. .
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[11], where the delay characteristics of the n 2 algorithm were evaluated,

using the regenerative formulation used in this paper, in conjuction with the

solution of a functional equation. The n = 2 algorithm has also been analyzed

in [13], where a Markovian model is adopted, in conjuction with the solution to

infinite linear systems. We believe that the method proposed here is simpler

than both of the above methods. Finally, we note that the study of infinite

linear systems, in conjuction with the throughput analysis of the stack algorithm,

was initiated in [9].

4.

-

.4
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HH u  w Wu  D DU
0 0

0.05 1.00547 1.00547 0.05789 0.05789 1.651631 1.651631
0.10 1.02463 1.02463 0.141334 0.141334 1.87936 1.87936
0.15 1.06445 1.06445 0.27824 0.27824 2.24265 2.24265
0.20 1.14015 1.14015 0.54174 0.54174 2.87576 2.87576
0.25 1.29097 1.29097 1.17832 1.17832 4.15097 4.15097
0.30 1.66015 1.66015 3.52360 3.52360 7.57485 7.57485
0.35 3.65080 3.69063 38.27660 41.89753 80.13219 33.28928

Table 1

Delays for the (Ontrolled ALOHA

H 1 H1 Wi 1 WuD 1 DU l7

.01 1.00025 1.0003 .015258 .015258 1.5253 1.5255

.05 1.00395 1.00474 .08234 .082346 1.6348 1.6388

.1 1.025 1.030 .18503 .1859 1.796 1.8130

.15 1.060 1.061 .3212 .3245 2.000 2.040

.2 1.1167 1.11367 .5162 .5254 2.270 2.352

.25 1.2069 1.240 .8243 .8468 2.66 2.80

.3 1.356 1.408 1.381 1.434 3.270 3.525
:35 1.627 1.710 2.6088 2.7423 4.358 4.8151
.40 2.2279 2.374 6.6438 6.8603 6.779 7.670
.45 4.487 4.8536 35.012 37.871 16.030 18.754
.47 9.110 9.916 163.698 178.178 35.125 41,613

.48 21,175 23,122 944.35 1031.12 85.086 101.452

Table 2

Delays for the "0.487" Algorithm
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n= 2 n=3 D

DU D H H DU D

0.05 1.00565 1.68404 1.00619 1.67669
0.10 1.02622 1.96913 1.02788 1.92764
0.15 1.07113 2.44552 1.07265 2.30451
0.20 1.16167 3.33212 1.15587 2.91389
0.25 1.35801 5.29176 1.31346 4.01133

0.30 1.92055 11.38280 1.65242 6.37571
0.35 8.22892 87.28995 2.69508 13.87780

Table 3

Delays for the SA2 and the SA 3

%1

J.
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A. 1

APPENDIX A

We present, in a generalized format, some basic results regarding the

approximate computation of solutions of infinite dimensionality linear systems

[211. Let A be a denumerable set of indices, and let E be the space of sequences

X = tx(k)}: A + R. Given a set f Cik0R, bi ER,i,kcA J, let EL be the subspace

of E defined as follows: EL {X: Z Ic kx(k)l< - vicA f. We define an operator
k A

L :EL + E as follows: y(i) = Li(X) = bL + Z cx(k) i EA xLEL. A point
k A

SL EL, such that,

S L = L(SL) (A.1)

is called a fixed point of the operator L. (A.1) represents an infinite system of

linear equations and a fixed point is a solution to this system. Given an operator

n 1  1 n+ a
L, we define its n-th power L as follows: L (xO ) = L(X0 ), L (XO ) = L(Ln(X0 )),

n=1,2,..., provided that Xo EEL , and Ln(Xo) kEL, for every n 1. The sequence

A 
(tXn } = [Ln(x0 )}, n=1,2,... is called the power sequence of L, with initial

point Xo . A fixed point of L that is a pointwise limit of the power sequence of L,

with initial point X0  0, is called a principal fixed point of L, and is denoted oy

L
S3. An operator 0: E' E is called a majorant of L, iff,

Cik! ' ik ik

IbLIo' A

In this case, L is called a minorant of J. The notation X < X', X X', X,X'LE

means that x(k) < x'l(k), (x(k) I x'(k)), k LA . A point X .E is called positive

(nonnegative) ift, 0 < X (U & X). By lXI we denote the sequence defined by

'* ,,, , t,...
{- - ,

.............................................
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Ixl(k) x(k)j, k A. Theorems Al, A2 below are essentially theorems I, 1I 2

of [21j. They relate the existence and uniqueness Of a fixed point of L, to the

existence of a fixed point of a majorant U of L.

U
Theorem A. If U is a majorant of L, and 0 has a nonnegative fixed point S

then both 0 and L have principal fixed points S.U, S L . Moreover, 0 r IsLI _ So S U

Theorem A.2 If 0 is a majorant of L, and 0 has a nonnegative fixed point S

then the principal fixed point SL of L is unique in the class E 0 C E , defined as

follows.

E'- IE~sup x(i)l .}(l)E* i x eE 0 <u 0<

iEA s.(i)

[L
Furthermore, S L is the pointwise limit of any power sequence of L, with initial point

any point in E*

Theorem A.3 below relates the existence and uniqueness of a fixed point of L,

to the existence of a fixed point of a majorant U of L, and it is a consequence of th

theory of regular systems [21). Its difference from theorems Al, A2, lies in the fact

U U
that, under the stated assumptions in it, we have, S = S*.

Theorem A.3 If ' .s a majorant of L, and !ias a positive fixed point Si

such that,

. bi

i. A% s (1)

0 0O "

then S. S Therefore, theorem A.2 holds with S. replaced by S

(1) We adopt the convention:

o Ll
- = 1, - - ', a > 0
0 0

"% ... ....... ....--...... -
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The following theorem relates the existence and uniqueness of a fixed point

of some operator 02, to the existence and uniqueness of such a point for another

operator 0I, where the latter is not necessarily a majorant of the former.

Theorem A.4 Let 01, 02, be two operators such that,

0 0
1 2 01

(a) cik Iciki V i,k t-A , b i  [O,),Vi LA

01

(i) If 01 has a fixed point S , and there exists a sequence g:A+ R, such that,

01
(b) g + S ) 0

01
(C) E ICik g(k) I < -,Vi E A

ke A

02 01 01
(d) lbi I (bi + g(i) - E Cik g(k)) M, Vi cA , for some M > 0.

keA

Then,O2 has a fixed point.

(ii) If (a), (b), (d) hold, for g = 0, then the solution of 02 is unique in the

01 01
class E. , where E. is as defined in Th. A.2.

(iii) If in addition to (a), (b), (d), we have that,

01 01

b i +Y(i)- L Cikg (K)
01 kcA

(e) g + S > 0, and inf ------------------- >0,
ic-A 01

s (')+,4(l)
O1 01 02

then the fixed point S of 02 is unique in the class Eg C E defined as

follows.

01 jx(i)

Eq = jXLE : sup ---------- <
i3A 01s(i)+y(i)

02 01
S is the pointwise limit of any power sequence of 02, with initial point in Eq.
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Proof
01 01 01 01

Part (i):Let Y = (S +g) M. Since S = 01(S ), we have that,

01 01
Y /M - g 01 (y /M - g)

or

01 01 01 01 01
y (i) = M(b i +g(i) - E cikg(k)) + E cik y (i) (A.2)

keA kEA

Frota (A.2) and (b), we see that the operator () with parameters,

i'.-.0 1 0 1

b M (bi +g(i)- E Cik g(k)), i eA
0 1

C ik = Cik i,k eA

0
has a nonnegative fixed point S 8 0 Y o. Because of (a) and (d), 0 is a majorant

of 02. From theorem A.1, we conclude that 02 has a fixed point.

01
Part (ii) This follows from A.2, by observing that S* = M S. , and, therefore,

01•~ =e
C0- E*

Part (iii) : Under condition (e), theorem A.3 is applicable, and shows the uniquenes

of the fixed point in Eg •

The following lemma is useful in identifying the class within which the fixed

point of an operator is unique, in the case where the solution of the majorant is not

exactly known.

Lemma A.1 if s,F :A + R, and,

(ax) S, F are nonnegative

s(i)
(b) sup ---- <

s(i)
(c) inf ----- > 0,
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N

". x (i ) l I x (i ) I
then sup--------< , iff sup- --- < 1, X t , i.e. the classes

Ix(i)l -x(i) I
= (XcA: sup--------} and EF = txcA: sup--- .. < , coincide.isA sli) isA tj(i)

Proof For the "if" part let

Ix(i)lI
sup ...... A < oo Ix(i)I A s(i), i tA (A.3)
icA s(i)

Because of (b), we have,

s(i) 4 B 6(i), i eA , B < (A.4)

Ix(i)
-From (A.3), (A.4), we conclude that, Ix(i)l 4 A B 6(i), i EA or, su-------( A B <

i"A 6(i)

The proof of the "only if" part is similar.

LThe lemma below is used to establish the existence of a fixed point S of an

Loperator L, as well as upper and lower bounds on S . Its proof, via induction,

is straightforward.

Lemma A.2 Let L be an operator with nonnegative parameters i.e.
L k L ~ x

cik 0 ik A , k 0, iEA. If there exist points Yo, xo eL

such that,

(a) Yo X0

(b) X° o L(X° ) > 0

(c) Y' %lyo),

then the power sequence of L, with initial points X° (YO) decreases (increases)

L L L L omonotonically and pointwise, to a fixed point SL(sL). Furthermore, YO 4 S r S Xo

and S 0.

It is generally difficult to establish tight bounds on S , using the method

exhibited by lemma A.2. The following theorem provides an alternative method for

the computation of such bounds.

..--.... '.. ... ... ,... ,....•. ..... ,. . . .. .. ....... ,- . ...-.. , ... , %, ,' %,
_. .. L* . -*. -.!! i
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Theorem A.5 Let L be an operator with nonnegative parameters:

ik 0, i,keA , bi )O , E A

Let SL be a nonnegative fixed point of L, for which it is known that

L L L L L L LL ( S ( UL, L , S , U £ EL. Let A.CA, Ac be the complement

of Aj, and let , Fj, Oj be the operators with parameters,

Oj ej Fjc'" i,keA
cik =cik =cik=

0 , Otherwise

bL + L 5L k A
ij~iF. ( 1 kEA #

b2 "]=

0 0 ,Otherwise

L L LL+ c ck X (k) , P< b, i, A
i,

bi =

0 ,Otherwise

L LL0i + Cik u (k) , 0 A b. , icA0 kA 01 1' j

0 , Otherwise

F.
Then, (a) F. has a nonnegative fixed point S , such that,

F. sL(i) i -As (i)) =J

0 ,Otherwise

(b) j is a minorant of F., and its principal solution S * is such that,

Sj Fj F.
U ! S* S* 4 S 0j

bi
(c) Oj is a majorant of F, and if sup ---- < 0, then Uj has a

i A . Lj
Oj b i

nonnegative fixed point S , such that,

F. U 0
0 (S ( S. (S

..... , . ,~-,*.~' .... ..........-.... ..... ......... . ..... .. . . ........... ........
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(d) If in addition to the previous conditions, also SL > U, and

bL
inf -- > 0, then the operators Oj, Fj, Uj have respectivei A . s ( i ) )I F

unique fixed points, S , S , S , in the class

Fj { j F j )j
Ej= x E : supx(i)< and S C S I S

icE F]
-'. s (i)

Remark If D is a finite set with bi > 0, vi e D, conditions (c) and (d) are

clearly satisfied. If in addition, P. = °i = bi', and A/A, then it can be
F. 0.

shown [21] that, S, + SL, and S* + S , pointwise.j j+-

The quantities of interest in the various random access algorithms are statisti

of random variables, where many of those statistics are fixed points of some operato

Theorem A.6 is used to justify the latter statement and appeared in [15].

Theorem A.6 Let L be an operator with nonnegative parameters, that has a unique

L L xil
nonnegative fixed point SL in the class Eg {xV : sup ---- oSiCP g(i)

Let ixin , txi}, i D V, n E N, be families of random variables, such that,

(a) 0 4 xf/x i, a.e. for every i ED

(b) x ' Mng(i)' a.e. for every i t. D, M <
I nn

(c) f n L(f n), f = L(f), where fn () = E tx 1 , f(i) = E txiI

Then, f coincides with the unique fixed point SL in EL.
g

Proof

We observe that because of (b), then fn cEL, and because of (c) and lemma A.2,

then f n SL. Since also fn increases to f pointwise, because of (a) and the

monotone convergence theorem, we conclude that f ' SL, and therefore f E EL.

The assertion now follows, from the fact that f is a fixed point of L.

;'. -"-. . .' """ . ." .- . -.-> "' .' ---. '" -' , "V Y .? " ' -" . 2' "-" """ ' " '" " " ""%" " ;
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APPENDIX B

In section 4.2, we saw that the computation of conditional expectations,

E{Xjd}, is required. In this appendix, we show that those conditional expectations

can be computed with high accuracy. Let us define,

E{Xld, k} The conditional expectation of the random variable X, given that

the arrival interval contains k packets, and has length d.

' Then,

k
E{Xjd} E E E{Xld,kle- d (Xd) (B.1)

k=O k!

Using the rules of the algorithm, the quantities E{Xld,k} can be computed

recursively , as follows.

E{Vtd,k} = E{Z/l,k}; V deF

E{11l,O} = E{Z/l,l1 - 1 (B.2)
k k-l Ik

E{1/l,k} = (l+P~klE{t/l,k-lPi+E E{1/1,i1P)/(I-2P ); k > 2
i=2

where k= -k

E{S/d,k) = d E{6/l,kl; V deF

E{611,01 = E{6/1,k} = 1 (B.3)
-k-

E{6/l,k - (Pk+Pk-+E{6/l ,k) k +kl l)k /2lP k k > 2
r.' i=2

E{2/d,kl- E{, 2/l,k};V deF

E{ 2/1,o1- E{1 2/l,l} _ 1. k-1
E{92 /,k}= (2E{1/1,k}+2E{I1k,k-l}'P+Pkl+PkE{ l2 ,k-l1+ E{ 2,i}P)/,

k1 i=2 i

(l-2P0); k > 2 (B.4)

E{/ 21d,k}- d2F(62/1,k} ; V deF

E{6 2/1.O1_ E{62/1,11 - 1

E{6 2 ,/lk- (.2 5  +pk)5 k E{6/l,k-l}+.25 E{2,k-

k-i l
.25 Z E{6 /IliP i)/(l-.5P ; k > 2 (B.5)

1-2

..........:::.. ..-... " .. ... .. ..... , ...-. -.. -... : ..... ... .. ... .. . ,*.,.. .. ,..,:,,,...
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E{61/d,k} - d E{6t/1,k} ; V deF

Ef.{/1,o1 - E{6/1,11 = 1

.{61/1,k} - (E{6/l,k}+.5PkE{t/lk-l}+.5PkE{t/1,k-l}+.5 {5E(6/l,k- 1 }+
k-2

E{N/d,k} - E{N/I,k}; V deF

E{N/1,o1 - 0, E{N/1,11 - 1

E{gll,k} - P1  N/l,k-)+ E E{N/li}P ; k > 2 (B.7)
i=2

E{W/d,k) = E{W/lk}; 4F deF

E{w/l,0} - 0, E{w11,1- 1 (B.8)
k-1k

Efw/l,k} - (PN+(N/1,k+PS{EN/l k-}l+pk.E{w/1I,k-ll+ E E{w/1,k}P )(1-2P k); k > 21 1 1 i=20
1-

E{*/d,k) - d E{*/1,k}; VJ deF

E{I/I,o0 - 0, E{*Il,-} 2 1 (B.9)

E{*I/1,k} = ({/k)1 k)PE{/kl) 5k k k-

k i=2
/(2 (1-P;)) ; k > 2

From formulas (B.2)-(B.9), we see that a finite number, M, of terms from the

infinite series (B.1), can be easily computed. Also, for large k values, and based

on the recursive expressions, simple upper and lower bounds on E{X/d,k) can be

Go EXdked (d) k
developed. Those bounds can be used to tightly bound the sum E E{X/d,ke - d  k

k=M+l

Remark It can be also proved that

EfN/di - XE{6/dl

E{*/dl - Xd E{6/d} - E{6/d)

EJ!

,- - r a.. * .
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